NEW RHODIUM(III) AND IRIDIUM(III) CYCLOPENTADIENYL COMPOUNDS OBTAINED BY REACTION OF [CpM $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right] \mathrm{BPh}_{4}$ ($\mathrm{M}=\mathrm{Rh}$, Ir) COMPLEXES WITH NUCLEOPHILES

F. FARAONE, F. CUSMANO, P. PIRAINO and R. PIETROPAOLO
Istituto di Chimica Generale, Università di Messina, 98100 Messina (Italy)

(Received May 8th, 1972)

SUMMARY
The new complexes $\left[\mathrm{CpM}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right] \mathrm{BPh}_{4}$ where M is Rh or Ir , have been prepared, and their reactions with $\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{N}_{3}^{-}, \mathrm{SCN}^{-}, \mathrm{SeCN}^{-}$, halide ion, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}^{-}$examined. The rhodium cationic complex reacts readily at room temperature to give cyclopentadienyl complexes of $\mathrm{Rh}^{\mathrm{III}}$; as expected, the $\mathrm{CH}_{3} \mathrm{O}^{-}$ and N_{3}^{-}ions react at the carbonyl group. The reaction of $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{2}\right)^{-}\right.$$\left.\mathrm{CH}_{2} \mathrm{CN}\right]^{+}$with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}^{-}$gives $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, formed by loss of SO_{2} from the initially formed $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{SO}_{2} \mathrm{Ph}\right)$.
$\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}$ reacts at room temperature only with $\mathrm{CH}_{3} \mathrm{O}^{-}$and N_{3}^{-}, and no reaction occurs during 12 h even in refluxing acetone with other anions. The lower reactivity of the iridium complex is interpreted in terms of the stability of the cationic complex and the strength of the $\mathrm{M}-\mathrm{CO}$ bond.

INTRODUCTION

Neutral cyclopentadienyl complexes of rhodium(III) and iridium(III) have been described recently ${ }^{1-6}$. They were generally prepared by oxidative addition of halogens, alkyl and acyl halides, germanium and tin halides, or triphenyl- and tribenzylsilane to $\mathrm{CpM}(\mathrm{CO}) \mathrm{L}(\mathrm{L}=\mathrm{CO}$ or tertiary phosphine). We describe below a new series of cyclopentadienyl $\mathrm{Rh}^{\text {III }}$ complexes obtained from the reactions of nucleophiles such as $\mathrm{CH}_{3} \mathrm{O}^{-}, \mathrm{N}_{3}^{-}, \mathrm{SCN}^{-}, \mathrm{SeCN}^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$with the cationic complex $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$. The analogous complex $[\mathrm{CpIr}(\mathrm{CO})-$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$has been made, and this has allowed the effect of the metal to be examined in this type of reaction.

EXPERIMENTAL
$\mathrm{CpRh}(\mathrm{CO}) \mathrm{PPh}_{3}$ and $\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ were prepared as previously reported ${ }^{7}$. Other chemicals used were reagent grade. Basic alumina was used for chromatography. IR spectra were recorded with a Perkin-Elmer model 457 spectrometer, molecular weights were determined on a Knauer vapor pressure osmometer, and melting points were determined on a Fisher-Jones hot stage apparatus. Elemental
analyses were by Alfred Bernhardt, Mikroanalytisches Laboratorium, Mülheim, Germany. All reactions were carried out under nitrogen. Analytical and physical data are listed in Table 1; IR data in Table 2.

TABLE 1
PHYSICAL PROPERTIES AND ANALYTICAL DATA

Compounds	Colour	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Analysis found (calcd.) (\%)			
			C	H	N	Hal
$\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \text { }{ }^{\text {a }} \text { (}}\right.\right.$	Yellow	120-124 dec.	$\begin{gathered} 73.21 \\ (73.45) \end{gathered}$	$\begin{gathered} 5.10 \\ (5.17) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.71) \end{gathered}$	
$\left[\mathrm{Cplr}(\mathrm{CO})\left(\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} 4{ }^{\text {c }} \text { (}}\right.\right.$	Wine	111-118 dec.	$\begin{gathered} 66.12 \\ (66.22) \end{gathered}$	$\begin{gathered} 4.66 \\ (4.66) \end{gathered}$	$\begin{gathered} 1.73 \\ (1.54) \end{gathered}$	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$	Yellow	132-140 dec.	$\begin{gathered} 61.06 \\ (61.25) \end{gathered}$	$\begin{gathered} 4.73 \\ (4.76) \end{gathered}$	$\begin{gathered} 2.73 \\ (2.64) \end{gathered}$	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{NCO})$	Yellow	124-127	$\begin{gathered} 60.54 \\ (60.90) \end{gathered}$	$\begin{gathered} 4.42 \\ (4.32) \end{gathered}$	$\begin{gathered} 5.84 \\ (5.46) \end{gathered}$	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SCN})$	Yellow	175-179	$\begin{gathered} 58.25 \\ (58.14) \end{gathered}$	$\begin{gathered} 3.42 \\ (3.20) \end{gathered}$	$\begin{gathered} 5.19 \\ (5.42) \end{gathered}$	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SeCN})$	Brick	152-168 dec.	$\begin{gathered} 54.14 \\ (54.29) \end{gathered}$	$\begin{gathered} 3.91 \\ (3.85) \end{gathered}$	$\begin{gathered} 4.86 \\ (4.86) \end{gathered}$	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{I}$	Brick	94-98 dec.	$\begin{gathered} 50.41 \\ (50.27) \end{gathered}$	$\begin{gathered} 3.56 \\ (3.71) \end{gathered}$	$\begin{gathered} 2.51 \\ (2.34) \end{gathered}$	$\begin{gathered} 21.44 \\ (21.24) \end{gathered}$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Br}$	Brick	119-125	$\begin{gathered} 54.75 \\ (54.57) \end{gathered}$	$\begin{gathered} 3.91 \\ (4.03) \end{gathered}$	$\begin{gathered} 2.42 \\ (2.54) \end{gathered}$	$\begin{gathered} 15.03 \\ (14.62) \end{gathered}$
	Orange	$>125 \mathrm{dec}$.	$\begin{gathered} 58.98 \\ (59.37) \end{gathered}$	$\begin{gathered} 4.57 \\ (4.38) \end{gathered}$	$\begin{gathered} 2.94 \\ (2.76) \end{gathered}$	$\begin{gathered} 7.34 \\ (7.01) \end{gathered}$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$	Yelloworange	76-80	$\begin{gathered} 68.01 \\ (68.01) \end{gathered}$	$\begin{gathered} 4.92 \\ (4.97) \end{gathered}$	$\begin{gathered} 2.43 \\ (2.55) \end{gathered}$	
CpIr $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{NCO})$	Ivory	90-95 dec.	$\begin{gathered} 52.14 \\ (51.90) \end{gathered}$	$\begin{gathered} 3.78 \\ (3.68) \end{gathered}$	$\begin{gathered} 4.35 \\ (4.65) \end{gathered}$	
$\mathrm{CpIr}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$	Paleyellow	138-145 dec.	$\begin{gathered} 52.12 \\ (52.41) \end{gathered}$	$\begin{gathered} 4.21 \\ (4.07) \end{gathered}$	$\begin{gathered} 2.14 \\ (2.26) \end{gathered}$	

Preparation of $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] B \mathrm{Ph}_{4}$
To a hexane solution of $\mathrm{CpRh}(\mathrm{CO}) \mathrm{PPh}_{3}(100 \mathrm{mg} ; 0.22 \mathrm{mmoles})$ was added an excess of $\mathrm{ClCH}_{2} \mathrm{CN}(0.4 \mathrm{ml})$. The mixture was stirred, and a red oil was present after 5 h . After evaporation of the solvent, this oil was dissolved in $\mathrm{CH}_{3} \mathrm{OH} ; \mathrm{NaBPh}_{4}$ was added, and yellow needles were obtained.

Preparation of $\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}$

Wine-coloured crystals of $\left[\mathrm{CpIr}(\mathrm{CO}) \mathrm{PPh}_{3}\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}$ were obtained analogcusly from $\mathrm{CpIr}(\mathrm{CO}) \mathrm{PPh}_{3}$ and $\mathrm{ClCH}_{2} \mathrm{CN}$.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COOCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)$

$\mathrm{CH}_{3} \mathrm{OLi}(1 \mathrm{ml}$ of 0.15 N$)$ in methanol was added to a suspension of [CpRh(CO) $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}$ in the same solvent. After 2 h the solvent was evaporated and the yellow solid obtained was washed with water and dried. The product was crystallized from CHCl_{3} /pentane.

TABLE 2
IR DATA

Compound	$\begin{aligned} & v(C N)^{d} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	Other bands
$\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$	2204 m	2070 vs v(CO)
	2223 m	2058 vs v(CO)
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$	2200 m	1632 sv (CO)
$\left.\mathrm{CpRh}^{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{NCO})$	2200 s	$2245 \mathrm{~s} v(\mathrm{NCO})$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SCN})$	2200 m	$2108 \mathrm{sv(CN})$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SeCN})$	2200 m	$2115 \mathrm{mr}(\mathrm{CN})$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{I}$	2200 m	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Br}$	2198 m	
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Cl}$	2198 s	$303 \mathrm{mv}(\mathrm{Rh}-\mathrm{Cl})$
$\mathrm{CpRh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$	2201 m	
$\mathrm{CpIr}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{NCO})$	2205 s	2245 sv (NCO)
$\mathrm{CPIr}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$	2200 m	$1640 \mathrm{sv}(\mathrm{CO})$

a Of the $\mathrm{CH}_{2} \mathrm{CN}$.
Preparation of $\mathrm{CpIr}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COOCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)$
In the same way, $\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right] \mathrm{BPh}_{4}(150 \mathrm{mg}, 0.16$ mmoles $)$ was treated with $\mathrm{CH}_{3} \mathrm{OLi}(1.3 \mathrm{ml}$ of 0.15 N$)$, and after about 5 h the solid obtained was washed with water, dried, and crystallized from CHCl_{3} /pentane.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)(\mathrm{NCO})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$
$\mathrm{NaN}_{3}(12 \mathrm{mg} ; 0.18 \mathrm{mmoles})$ in acetone was added to a suspension of [CpRh$\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(150 \mathrm{mg} ; 0.183 \mathrm{mmoles})$ in the same solvent. The \mathbb{R} spectrum showed the reaction to be complete after about 20 min . The concentrated solution was passed through an alumina column with CHCl_{3} as eluant, and the yellow solution obtained was diluted with pentane to give a yellow precipitate.

Preparation of $\mathrm{CpIr}\left(\mathrm{PPh}_{3}\right)(\mathrm{NCO})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$
$\mathrm{NaN}_{3}(9.4 \mathrm{mg} ; 0.145 \mathrm{mmoles})$ in acetone was added to a solution of [CpIr$\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(130 \mathrm{mg} ; 0.143 \mathrm{mmoles})$ in the same solvent. The mixture was stirred for 3 h , then filtered, and the solvent was evaporated under vacuum. The solid residue was washed, dried, and crystallized from $\mathrm{CHCl}_{3} /$ pentane.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Cl}$

$\mathrm{KCl}(0.15 \mathrm{mg} ; 0.20$ mmoles $)$ in 1 ml of water was added to a solution of [CpRh(CO) $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(150 \mathrm{mg} ; 0.183 \mathrm{mmoles})$ in 60 ml of acetone. The colour of the solution changed from yellow to orange, and after 5 h the solution was concentrated and transferred to an alumina column. Acetone elution gave a yellow fraction, from which yellow crystals were obtained by addition of pentane at -78°.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{Br}$ and $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{I}$
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Br}$ (31 mg ; 0.2 mmoles) was added to a solution of [$\mathrm{CpRh}(\mathrm{CO})$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(160 \mathrm{mg} ; 0.195 \mathrm{mmoles})$ in 30 ml of acetone. The mixture was stirred for about 4 h and then evaporated. The residue was taken up in CCl_{4}, and the
solution was filtered and concentrated. Addition of pentane gave a brick-coloured solid. $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{I}$ was prepared analogously.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SeCN})$ and $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{SCN})$
$\mathrm{NaSeCN}(25 \mathrm{mg} ; 0.19 \mathrm{mmoles})$ in acetone was added to $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(150 \mathrm{mg} ; 0.183 \mathrm{mmoies})$ in the same solvent. The reaction mixture was stirred for 4 h , then filtered, concentrated, and passed through alumina. With acetone as eluant a yellow fraction was separated, and a solid was obtained by adding pentane. $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)(\mathrm{SeCN})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$ was prepared analogously.

Preparation of $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$
A slight excess of $\mathrm{NaSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ was added to an acetone solution of [CpRh $\left.\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}(160 \mathrm{mg} ; 0.195 \mathrm{mmoles})$. After 3 h the \mathbb{R} spectrum of the reaction mixture showed no $v(\mathrm{CO})$ band. The solvent was then evaporated and the solid residue dissolved in CHCl_{3}, filtered, and passed through alumina.

With CHCl_{3} as eluant a yellow fraction was separated and a yellow solid obtained by adding pentane.

RESULTS AND DISCUSSION

The reaction of $\mathrm{ClCH}_{2} \mathrm{CN}$ with $\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ has been previously reported ${ }^{8}$. The cationic complex $\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right] \mathrm{BPh}_{4}$ has now been obtained as crystals by addition of $\mathrm{ClCH}_{2} \mathrm{CN}$ to $\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ in hexane. The IR spectrum is fairly similar to that of the analogous rhodium complex; it shows a $v(\mathrm{CN})$ band at $2223 \mathrm{~cm}^{-1}$ and a strong absorption due to the CO stretching frequency at $2058 \mathrm{~cm}^{-1}$.

Reactions with $\mathrm{CH}_{3} \mathrm{O}^{-}$and N_{3}^{-}
The cationic complexes $\left[\mathrm{CpM}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]^{+}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir})$ undergo nucleophilic attack at the carbon atom of the coordinated CO when treated with $\mathrm{CH}_{3} \mathrm{O}^{-}$or N_{3}^{-}. Many reactions reported in the literature show that metal carbonyls readily undergo such attack at the carbonyl carbon atom which is an electrophilic center and prefers hard nucleophiles such as $\mathrm{CH}_{3} \mathrm{O}^{-}$and N_{3}^{-}. It has also been shown ${ }^{9-10}$ that if a complex contains groups which are more electrophilic than the CO entity, as in $[\mathrm{CpFe}(\mathrm{CO})(\mathrm{CS})]^{+}$or $\left[\mathrm{CpFe}(\mathrm{CO})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$, the attack does not then occur at the carbonyl group ${ }^{9,10}$. Since we did not observe any attack at the $\mathrm{CH}_{2^{-}}$ CN ligand, this ligand must be less electrophilic than the CO group. Furthermore, the high value of the $v(\mathrm{CO})$ can be regarded, in accord with Darensbourg's suggestions ${ }^{11}$, as being indicative of pronounced electrophilic character in the carbonyl group of the complexes under examination. This is probably enhanced by the positive charge on the complex and by the oxidation state of the metal.

The complex $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$ obtained from $\mathrm{CH}_{3} \mathrm{O}^{-}$and $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]^{+}$shows a band in the \mathbb{R} spectrum at $2200 \mathrm{~cm}^{-1}$ due to the $\nu(\mathrm{CN})$ and one at $1632 \mathrm{~cm}^{-1}$ due to the coordinated alkoxycarbonyl group. The reaction of $\left[\mathrm{ClIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]+$ with $\mathrm{CH}_{3} \mathrm{O}^{-}$is slower and requires several hours, but the spectrum of the product, $\mathrm{CpIr}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{COOCH}_{3}\right)$, shows a $v(\mathrm{CN})$ band at $2200 \mathrm{~cm}^{-1}$ and a $v(\mathrm{CO})$ band at $1640 \mathrm{~cm}^{-1}$.
$\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]^{+}$reacts with NaN_{3} at a $1 / 1$ molar ratio in acetone to give the isocyanate complex $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)(\mathrm{NCO})$. In the light of kinetic results reported for related substrates ${ }^{12}$, we suggest that the first step. of the reaction is a N_{3}^{-}attack at the carbonyl carbon atom, with the formation of CpRh $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CON}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, which subsequently loses N_{2} to give the isocyanate derivative. The \mathbb{R} spectrum shows a band at $2245 \mathrm{~cm}^{-1}$ due to the asymmetric $\mathrm{N}=\mathrm{C}=\mathrm{O}$ stretching and a CN stretching frequency at $2205 \mathrm{~cm}^{-1}$. A weak band at 2022 cm^{-1} is also present. The intensity of this increases if the reaction is carried out in methanol with an excess of azide, which suggests that another compound can be formed. We could not isolate this, but the stretching frequency of $2022 \mathrm{~cm}^{-1}$ indicates that an azide complex is probably involved.

The complex $\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$correspondingly reacts with N_{3}^{-} in acetone (molar ratio 1/1) to give $\mathrm{CpIr}\left(\mathrm{PPh}_{3}\right)(\mathrm{NCO})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$. In accord with this formulation, the \mathbb{R} spectrum shows a $v(\mathrm{NCO})$ band at $2245 \mathrm{~cm}^{-1}$ and a $v(\mathrm{CN})$ band at $2205 \mathrm{~cm}^{-1}$.

Reactions with halides, $\mathrm{NCS}^{-}, \mathrm{NCSe}^{-}$and PhSO_{2}^{-}

The cationic complex $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]^{+}$reacts with these anions to give neutral complexes of $\mathrm{Rh}^{\mathrm{II}}$ by loss of CO . The IR spectra of the $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{X}$ complexes, with $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I , have a band at $2200 \mathrm{~cm}^{-1}$ due to the CN group. The complexes $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)(\mathrm{SeCN})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$ and $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)(\mathrm{SCN})\left(\mathrm{CH}_{2}-\right.$ CN) show, in addition to the band at $2200 \mathrm{~cm}^{-1}$ due to the CN group, bands at 2115 and $2108 \mathrm{~cm}^{-1}$, respectively, due to the CN stretch of SeCN and SCN groups coordinated to the metal. As previously discussed ${ }^{13-14}$, the value of the CN stretching frequency does not permit a firm decision to be made between Rh-NCY and Rh-YCN structures ($\mathrm{Y}=\mathrm{S}$ or Se), but a value of $v(\mathrm{CSe})>558 \mathrm{~cm}^{-1}$ is usually interpreted as indicative of an M-NCSe bond ${ }^{13}$, while the $v(C S)$ frequency ranges between $720-690$ cm^{-1} for an $\mathrm{M}-\mathrm{NCS}$ bond and between $860-780 \mathrm{~cm}^{-1}$ for an $\mathrm{M}-\mathrm{SCN}$ bond. We could not observe such bands for the complex $\mathrm{CpRh}\left(\mathrm{PPh}_{3}\right)(\mathrm{SCN})\left(\mathrm{CH}_{2} \mathrm{CN}\right)$ because several strong absorptions interfere in the relevant range. However, by comparing the IR spectrum of the selenocyanate derivative in the range $550-690 \mathrm{~cm}^{-1}$ with that of the corresponding halogen complex it is possible to infer that the $v(\mathrm{CSe})$ frequency is not in this range, and we conclude that an $\mathrm{Rh}-\mathrm{SeCN}$ bond is involved. Since the same factors determine the type of bond formed in selenocyanate and thiocyanate complexes ${ }^{13-16}$, we also infer that an Rh-SCN bond is present in the analogous thiocyanate complex. In accordance with previous results ${ }^{17}$ for the reaction of cyclopentadienyliron tricarbonyl cation with cyanate ion, we regard the reaction with halides, SCN^{-}and SeCN^{-}as simple nucleophilic displacements of CO from the cationic complex $\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$.
$\left[\mathrm{CpRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CN}\right]^{+}$reacts in acetone with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Na}$ to give a neutral compound, which, on the basis of its analysis can be formulated as CpRh $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Probably the reaction first gives an S-sulfinate complex, which subsequently rearranges to a σ-aryl derivative^. This represents one of the few examples of a metal-aryl complex formed by loss of SO_{2} at room temperature, though compounds such as $\left[\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right) \mathrm{Cl}_{2}\right]^{18}$ and trans- $\left[\mathrm{PtL} \mathrm{P}_{2} \mathrm{Cl}\right.$ -

[^0]$\left.\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right)\right]^{19-20}\left(\mathrm{~L}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)$ form σ-aryl derivatives by loss of SO_{2} in boiling toluene. It is noteworthy that no carbene complex was isolated, as would be expected if the loss of SO_{2} occurred before the breaking of the $\mathrm{Rh}-\mathrm{CO}$ bond.

The cationic complex $\left[\mathrm{CpIr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$does not react in acetone with nucleophiles such as $\mathrm{I}^{-}, \mathrm{Cl}^{-}, \mathrm{SCN}^{-}$and SeCN^{-}even during 12 h under reflux, indicating that the reactivity of the complex $\left[\mathrm{CpM}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CN}\right)\right]^{+}$falls as the metal is changed from rhodium to iridium. Basolo and his colleagues ${ }^{21-22}$ described a kinetic study of the reactions between trans- $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{X}_{2}\right]^{+}(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}$; $\mathbf{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) complexes and various nucleophiles, and found that the rate is independent of the nature and the concentration of the nucleophile and is faster with rhodium complexes. We believe that the iridium complex is more stable than the rhodium analog, and this can be related to the greater importance of back donation from the metal atom to the antibonding orbitals of the CO in the case of the iridium. In this connection it is relevant to note that the $v(\mathrm{CO})$ is higher in the cationic rhodium complex than in the iridium analog.

ACKNOWLEDGEMENT

We thank the Italian C.N.R. for financial support.

REFERENCES

1 R. B. King. Inorg. Chem., 5 (1966) 82.
2 J. A. McCleverty and G. Wilkinson, J. Chem. Soc., (1964) 4200.
3 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 10 i1971) 1.
4 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 9 (1970) 243.
5 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 10 (1971) 1165.
6 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 9 (1970) 2653.
7 M. G. Schuster-Woldan and F. Basolo, J. Amer. Chem. Soc., 88 (1966) 1657.
8 F. Faraone, C. Ferrara and E. Rotondo, J. Organometal Chem., 33 (1971) 221.
9 L. Busetto, A. Palazzi, R. Ros and U. Belluco, J. Organometal Chem., 25 (1970) 207.
10 L. Busetto, M. Graziani and U. Belluco, Inorg. Chem., 10 (1971) 78.
11 D. J. Darensbourg and M. Y. Darensbourg, Inorg. Chem., 9 (1970) 1691.
12 H. Werner, W. Beck and H. Engelmann, Inorg. Chim. Acta, 3 (1969) 331.
13 T. E. Sloam and A. Wojcicki, Inorg. Chem., 7 (1968) 1268.
14 M. A. Jennings and A. Wojcicki, Inorg. Chim. Acia, 3 (1969) 335.
15 A. Turco and G. Pecile, Nature, 191 (1961) 66.
16 A. Turco, G. Pecile and M. Nicolini, J. Chem. Soc., (1962) 3008.
17 L. M. Charley and R. J. Angelici, Inorg. Chem., 10 (1971) 868.
18 J. P. Collmann and W. R. Roper, J. Amer. Chem. Soc., 88 (1966) 180.
19 C. D. Cook and G. S. Jaunhal, Can. J. Chem., 45 (1967) 301.
20 J. Chatt and D. M. P. Mingos, J. Chem. Soc. A, (1969) 1770.
21 F. Basolo, E. J. Bonnsall and A. J. Poe, Proc. Chem. Soc., (1963) 366.
22 R. A. Bauner and F. Basolo, Inorg. Chem., 8 (1969) 2237.

J. Organometal. Chem., 44 (1972)

[^0]: * We confirmed that the loss of SO_{2} was not due to purification of the complex on alumina.

